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Abstract-A theoretical model is proposed for the flow and heat transfer of molten steel in a ladle during 
pouring. Analytical and numerical solutions are obtained. Within the limitations of the model, agreement 

with plant observarions is satisfactory. 

NOMENCLATURE 

a, radius of ladle; 
A LI cross-sectional area of ladle; 
A NT cross-sectional area of nozzle; 
Bi, Biot number; 
c NV nozzle contraction factor; 

s> gravitational acceleration; 
h(t), head of steel at time t; 

K initial head of steel ; 
h, heat transfer coefficient ; 
K tbermal conductivity; 
k, thermal diffusivity ; 
p, Prandtl number; 
(r,z), cylindr:lcal polar coordinates; 
R,y,Z, dimensionless coordinates; 

4 time; 

tl = +& JG, emptying time; 
.’ 

T, temperature; 

T,9 initial temperature. 

Greek symbols 

a, = H/a, aspect ratio of ladle; 

6, thermal boundary layer thickness; 
s, = kt,/ii2, dimensionless emptying time; 
8, = (T- T,)/(T, -To), normalized 

dimensionless temperature; 
V * kinematic viscosity; 

P9 density; 
9 = ki/H’, T = t/tx, dimensionless times. 

Subscripts 

0, ambient condition; 
1, wall condition ; 
2, slag condition ; 

,“: 
fusion ; 
final emptying condition; 

N, nozzle condition; 
s, standing condition. 

1. lNTRODLJCTlON 

THE LADLE (see Fig. 1) is essential to the operation of 
a modern integrated iron and steef plant. It is a 
refractory-lined steel vessel, typically holding 300 
tonnes of Iiquid metal. It is used to transport iron or 
steel in molten form with a minimum of heat loss 
and also to pour steel into moulds prior to 
solidification and further processing. 

This paper is concerned only with the most 
common method of pouring, through an off-centre 
nozzle buift into the ladle base. The pouring process 
for a single ladle (termed a cast of steel) can take up 
to 60min. This is preceded by the transfer of the steel 
in the ladle from the steelmaking plant to the 
pouring station, which can also take up to 6Omin. 
The initial temperature of the steel before these 
stages is of the order of 1600°C; thus there will be 
considerable heat transfer from the steel, and 
temperature strati~cation may occur. For reasons of 
product quality, the steel temperature during the 
pouring sequence (termed the teem) must fall within 
a closely specified temperature range (as little as 
$- 5°C for certain steels). Thus it is impo~ant to have 
a method for predicting the temperature variation 
throughout the cast. Quantitative information on the 
average pouring temperature and its variation can 
have significant benefits for the steet plant. The 
effects of variations in process routes, such as times, 
filling temperatures, slag cover, insulating materials, 
initial thermal state of the ladle etc. can be studied, 
and the cost-benefits of amended conditions or 
improved materials can be evaluated. 

This paper examines theoretically the temperature 
distribution and flow of steel within a ladle during 
transfer and pouring. Previous work on this problem 
includes ex~rimental simulations by Hlinka [I] 
using water in an acrylic cylinder, with a top layer of 
oil to represent slag insulation cover. The effect of 
molten slag thickness on the heat loss from the top 
surface of molten steel in a ladle has been in- 
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vestigated theoretically by Szekely and Lee [2], but 
this work is not concerned with the flow and heat 
transfer during the actual pouring sequence. 

can be represented by 

(7T 
K- = -E&T- To). 

I% B 
(1.1) 

SLAG 

Here To is the ambient air temperature, h, the heat 
transfer coefficient at the molten steel boundary and 
n is measured outwards along the normal from the 
steel volume. An overall averaged value of gR 
relevant to the inner ladle surface (and also one for 
the slag/steel interface) is available from an analysis 
of plant data obtained from a variety of operating 
conditions. 

FIG. 1. Teeming ladle. 

It should be emphasis~ that it is possible to 
include the transient heat transfer at the ladle wall in 
the model. However, this idealization is made in 
order to simulate, in an overall sense, a wide variety 
of conditions that may exist in a typical working day 
of a steel plant. For example, prior to filling the ladle 
it may be cold, preheated, or warm from a previous 
teem. (However it is always desirable to ensure that 
the ladle wall is sufficiently hot to prevent solidifi- 
cation of the steel during the pouring process.) 

It is the purpose of this preliminary investigation 
to construct a simple mathematical model of ladle 
pouring and heat transfer which gives insight into 
the physicai processes which occur, and which 
indicates any further modifications to be made to the 
model so as to simulate more exactly the rea1 
situation. The prime objective in constructing such a 
model is the prediction of the nozzle streaming 
temperature. 

The basic assumptions made are as follows: 
(i) In order to predict the heat transfer within the 

ladle during pouring, it sulbces to assume that the 
flow of the molten steel is inviscid and irrotational. 

As the ladle empties, transient viscous and thermal 
boundary layers are attached to the inner walls of 
the ladle. Now since the Prandtl number 
P = y/k = 0.08 for molten steel it follows that the 
thickness & of the thermal boundary layer at any 
location will be greater than the thickness 6,, of the 
corresponding hydrodynamic boundary layer; this 
follows from the observation that in any such high 
Reynolds number forced convection flow, for small 
Prandtl number, the ratio &/6,, = O(P-I!‘). Hence 
an inviscid flow approximation is made in the 
calculation of the ladle temperature. The error 
involved can be estimated. It will be shown that the 
fall in nozzle temperature is small and of O(rCt,/H*): 
where tl is the pouring time of the ladle. For a 
typical value of tJ. of 1 hr, kt~/~’ = 1.6 x 10m3. 
Consequently the effect of viscosity, for high Rey- 
nolds number flow, will be of second order, namely 
O(P-“2ktf/HZ). It can also be argued that, bearing 
in mind the large scale dimensions of the ladle, the 
effects of viscosity are negligible in the emptying 
process, except when the ladle is almost empty. 

(iii) It is assumed that the effect of ladle taper on 
heat transfer is small. Thus the ladle is represented 
by a circular cylinder having a (mean) radius 
(u,+u,)/2, where ar and a, are respectively the 
top and bottom inner ladle radii. 

The relevant measure of the taper is in fact small, 
this being the dimensionless group (a,#I)s, where 
s = (a&~~)- 1 and its value is s = 0.15. 

It will be seen later that the reasons for neglecting 
ladle taper, in relation to the mathemalical for- 
mulation, are two fold. First the fluid velocity of the 
molten steel, on the basis of an inviscid approxi- 
mation, will be vertically downwards and equal in 
magnitude to the rate at which the top (slag covered) 
surface falls. Thus it will be a function of time only, 
and independent of the height z measured upwards 
from the ladle base. Secondly, because of this 
idealization and assumption (l.l), the thermal field 
can be separated into radial and axial variations, and 
this enables analytical and numerical solutions 
readily to be obtained. 

The error in the heat transfer due to the neglect of 
ladle taper can be shown to be O(skt,/If’), i.e. of 
second order, as is the neglect of viscosity.* 

(iv) Finally it is assumed that the physical 
properties of the molten steel are independent of the 
temperature (see Table 1). 

The actual variation in these quantities is small 
over the relevant range of temperature, say between 
1550 and 1600°C. Once again the assumption makes 
the problem more tractable in the mathematics 
sense. It does imply, however, that motion induced 
by the gravitational body force is neglected. In this 
connection it may be noted that at the base of the 
ladle, there is a state of stable thermal stratification. 

(ii) The thermal capacity and thickness of the 
refractory wails are ignored and it is assumed that 

*The relevant analysis required to derive this result is not 
presented here; in fact it follows closely that given in 

the thermal condition at the inner ladle/slag surface Section 3. 
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Table 1. Thermal properties of liquid steel of equation (2.1) yields the result 
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Density 7510kgmm3 
Specific heat 
Viscositv 
Conduckvity 
Heat transfer coefficient 

(Ladle walls, bottom) 
Heat transfer coefficient 

700Jkg-‘K-l 
48 x lo-‘Nsm-’ 

29 Wm-’ K-’ 

10P30Wm~2K-1 

(Slag cover) l-15Wm-ZK-’ 
Diffusivity (K/PC) 5.71 x 10-6m2s-’ 
Fusion temperature of steel 1470-1530°C 

Buoyancy forces may not be negligible in the region 
adjacent to the (vertical) ladle walls. However this 
region of thermal stratification is small in com- 
parison with the radius of the ladle, and dimensional 

arguments show that any buoyancy driven upflow 
there will have little effect on the overall downflow. 

Subject to the above assumptions, the equations 
governing the flow and heat transfer are formulated 
in Section 2. In Section 3, a solution of these 
equations is obtained for the special case of no 
thermal stratification at the beginning of the pouring 
sequence (by means of the method of matched 
asymptotic expansions). When the ladle is nearly 
empty this solution is invalid. The nature of the 
mathematical structure near to this final time can be 
revealed (for example, by employing the approximate 
heat balance integral method). However, as the fluid 
model breaks down at this time, these details will be 
omitted. In Section 4 the general case of thermal 
stratification existing prior to the pouring sequence 

is examined by numerical methods. A comparison is 
then made in Section 5 between analytical and 
numerical solutions, as is a comparison with available 
plant observations. Conclusions are given in Section 6. 

2. FORMULATION 

Consider first the inviscid fluid flow of the molten 
steel within the ladle during the pouring sequence. 
Let the cross-sectional area of the cylindrically 
shaped ladle be denoted by A,, and that of the 
nozzle be A,,,, where A,,, c A,. The contraction factor 
of the nozzle (to account for the inward bending of 
the streamlines towards the vertical axis) is denoted 

by rZv. Let the initial head of molten steel be denoted 
by H and during the pouring sequence let the height 
of the top surface be located at z = h(t). Using the 
equation of conservation of mass and Bernouilli’s 
equation it is a straightforward matter to show that: 

dh -2H 
_=__ 
dt t/ 

h(O) = H. (2.1) 

Here tf is the final emptying time for the ladle and is 
given by: 

- 
A, 2H 

t/z--- - 
A,vC.v J 9 ’ 

where g is the gravitational acceleration. Integration 

To simulate (for the ladle geometry described in 
Section 1) an observed emptying time of 1 hr, the 
contraction factor C, must take the value 0.633. 

In terms of cylindrical polar co-ordinates (r,Q.z) 

the inviscid irrotational flow of the molten steel has 
velocity components: 

(2.4) 

and during pouring the equation governing heat 
conduction and convection reduces to: 

Here T is the temperature and k is the thermal 
diffusivity. For the waiting period prior to pouring 
the temperat,ure will be governed by the heat 
cbnduction equation, i.e. as in equation (2.5) with the 
convective heat transfer term omitted. It will be seen 
that, because of the time scales involved, such 
thermal stratification is more in the nature of 

transient boundary layers attached to the walls 
rather than a change in the bulk (or core) of the 
molten steel from the initial filling temperature T1. 

To understand the mechanisms controlling the 

heat transfer in the steel only the case of no thermal 
stratification at the onset of pouring will be 
considered in this section. The general case of 
thermal stratification prior to pouring is considered 
in Section 4. 

Here the initial condition will be taken as: 

T = Tl for 0 < z < H, 0 < r < a, at t = 0, (2.6) 

where a is the radius of the ladle. As previously 
indicated, in order to model the loss of heat through 
the walls and slag covered surface, a Newton cooling 
law is assumed. Thus for t > 0: 

K g = - J&(T- To) at 2 = h(t), 0 G r < u. (2.7) 

aT _ 
Kb=h,(T-To) at==O,O<r<a, (2.8) 

2 

and on the cylindrical surface 

K$= -E1(T-To) atr=a,O G 3 d h(t). 

(2.9) 

In the above, K denotes the thermal conductivity 
and h, and h, (h, >> h,) denote the heat transfer 
coefficients, at the ladle wall and slag surface 
respectively, and are available from plant data. 

It is convenient to introduce the non-dimensional 
variables: 

Z = z/H, R = r/a, x = t/t,, c = kt,lH’ 

and B = (‘I- T,,)/( T, - To). 
(2.10) 
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The governing equations (2.5)-(2.9) become: 

;-2(l-r)g 

subject to the ~undary conditions: 

~=1,r=0,o~z~l,O~R~l, (2.12) 

ae 
-= -Ri,o atz = (I-~)~,~sxR 1, (2.13) 

8Z 

g=Bi,H atZ=O,O<RR I, (2.14) 

ae Bi, 
- = -a@ at R = 1,O G Z G (1 --T)~. (2.15) 
aR 

In terms of the representative length scale H the 
surface Biot numbers are 

u is the height to radius aspect ratio H/a. 
For the ladle dimensions given in Section 1 the 

aspect ratio a = 2; the ladle surface Biot number lies 
in the range 1 .$ Bir < 5, whilst that for the slag 
surface is in the range 0.1 < Biz d 1. The non- 
dimensional time a, corresponding to an actual 
pouring time of I hr, is small and is of order 
1.6 x 10W3. Moreover it is essential to note that it is 
small compared with the non-dimensional time 
taken for the molten steel to cool down to its fusion 
temperature, which is, of course, the minimum 
temperature possible in any pouring sequence. 
Consequently in the delay period prior to pouring, 
which is of the same order as the pouring time, the 
degree of thermal stratification must be small. 
Clearly the observed decrease in nozzle streaming 
temperature must be primarily controlled by the 
convective heat transfer term of equation (2.11). For 
example near the base the thermal gradient will be 
positive and so the convective term retards the rate 
of cooling compared with that due to thermal 
diffusion alone. On the other hand in the neigh- 
bourhood of the moving slag surface the thermal 
gradient is negative and so the rate of cooling will be 
comparatively enhanced. 

Since the above boundary conditions (2.13)-(2.15) 
are homogeneous in I!?, the thermal field is separable 
in the form: 

e(R, z, z; E) = U(R, 7; E)V(Z, t; E). (2.16) 

Consider first the R-variation. This satisfies the 
equation 

(2.17) 

au -Bi, 

3R aU’R1’ 
(2.18) 

andas&<< 1, 

U-r1 as R-+0, (2.19) 

and the initial condition 

U=l at z=O, O<R<l. (2.20) 

Secondly for the Z-variation, there results the 
equation 

subject to the boundary conditions: 

f3V 

z- 
- -Bi,V at Z = (l-rf2, (2.22) 

SW 
- = Bi, V at 
az 

Z = 0, (2.23) 

and the initial condition 

V=l at r=O,O<Zi:l. (2.24) 

The function U(R, r; c), determined by equations 
(2.17)-(2.20), correct to order E, is given by: 

2EBi, 
U(R,r;&) = l-- 

exp[ - (1 - R)‘/40r28r] 

-yerfc[(I--R)/Zl&]/. 

(2.25) 

see Carslaw and Jaeger [3]. As a consequence the 
thermal radial boundary layer can penetrate at most 
a distance (1 - R) = O(a .,/E). For a typical pouring 
sequence this is equivalent to a thermal stratification 
over a region of the order of 8:<’ of the radius of the 
ladle. 

As far as the function V(Z, r; E) (defined by 
equations (2.21)-(2.24)) is concerned, the mathemati- 
cal structure ts more complex. This is because of the 
presence of the convective term and the fact that E 
multiplies the highest derivative in equation (2.21). 
In the next section a solution is obtained for the 
simplest case of an insulated slag surface, Bi2 = 0. 
The method of matched asymptotic expansions is 
employed yielding a uniformiy valid solution for 
pouring times up to r = 1 - O(E”~). 

Finally it should be pointed out that on the basis 
of an inviscid flow model and the other assumptions 
mentioned, the problem of flow and heat transfer in 
a ladle has been simplified to the problem of 
determining V, a function of one space coordinate 
and time. The same comment applies to the general 
case of cooling prior to pouring, and this is 
investigate by standard numerical methods in 
Section 4. 
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3. THE SPECIAL CASE OF AN INSULATING 
SLAG SURFACE, Bi, = 0 

In this special case the equations to be solved are 
(2.21)-(2.24) but with Biz = 0. This is a singular 
perturbation problem, with a four region structure in 
the (2, r) plane. Firstly there is a boundary layer at 
Z = 0, of thickness O(E), but also it is found that the 
solution at small values of r, in fact z = O(E), is 
different from that at T = O(l), and two expansions 
are required. Thus there are four regions. 

Region 1: Here r is O(E) and Z is 0( 1). Hence the 
new variables are Z = Z, T* = Z/C, with V = V* 
(Z, 5*). 

Region 2: This is the inner small time region, so 
that the appropriate variables are Z = Z/E, r* = t/~, 

with V = ‘i;* (Z, T*). 
Region 3: In the outer spatial region, when. T is 

O(l), the variables will be the original Z, r, V. 
Region 4: The inner spatial region, with r = O(l), 

requires the variables Z = Z/c, 7 = 7, with Y = P 

(2, r). 
The method of matched asymptotic expansions 

can be used to determine two term solutions, valid in 
each of the four regions. The details are not 
presented here, but the matching may easily be 
verified (virtually on inspection), and the solutions 
may just as easily be verified by substitution into the 
governing equations (cast, of course, in the appro- 
priate variables). The solutions for the four regions 
turn out to be 

v* = 1$O(E2), (3.1) 

V* = I +T 
‘! 

(1+22+4r*)erfc 
[ 

2 
---=+Jz* 
2&* I 

[ z 
-exp( -2Z)erfc __ - 

2JF ‘il 
2 

(3.2) 

v= l+o(&*), (3.3) 

i7=1- 
.&il 

-exp[-2(1-e)ZJ. 
2(1-T) 

(3.4) 

The required results for the nozzle streaming 
temperature, obtained by evaluating the above at 
Z=O,are: 

(G-T,) - = 1 +$I3i, 
Wi - G) 

2r*-(1+27*) 

x erf@-2Jexp[-r*]/ (3.5) 

for 7 = O(E), and 

(TN - T,) 
-= I-&Bi1/2(1-T), 
Vi - T,) 

(3.6) 

It might be pointed out at this stage that it is very 
easy to add a boundary layer at the top, to account 
for the case Bi, + 0; this does not need the 
sophistication of two temporal regions. However, 
this does not affect the nozzle temperature, except 
when t is very close to unity, and the top boundary 
layer “collapses” on to the bottom one. In fact, near 
7 = 1, the above solution is clearly invalid. (The 
formal mathematical structure can be elucidated, and 
it turns out to be in a region when 1 --t = O(C”~). 
However, since the model is inadequate in this very 
small temporal region, this formal exercise is not 
presented.) 

In Section 5, the above analytical solutions for an 
insulating slag surface are shown to be in exact 
agreement with numerical solutions of the equations. 
This verification proved invaluable in checking 
computer algorithms involved in the study of the 
general case with thermal stratification prior to 
pouring. 

1. NUMERICAL SOLUTIONS 

For a typical waiting period of 1 hr, for the ladle 
geometry described in Section 1, the zone of radial 
thermal stratification is insufficient to affect the 
nozzle streaming temperature. However the thermal 
stratification rising from the base and that attached 
to the slag interface is important in this connection. 

Thermal stratification prior to pouring 
Let t, be the standing time prior to pouring; 

further let 
kt kt 

i=-.- and +,=L. 
H2 HZ 

(4.1) 

Then the temperature distribution is given by 

ae a28 ?x2 a 
z - az2 

--‘e--z l7; c ) ) o<:<+;, (4.2) 

subject to theconditions (2.14), (2.15) and 

a0 
z (4.3) 

together with the initial condition (2.12). As ?, CC 1 
(in fact i, = O(E)) the solution is represented by 

0 = U,(R, :)v,(Z, :), (4.4) 

with the radial strati~cation function U,(R, +) given 
as in (2.25) with E replaced by i,, and t replaced by 
- i’ 
t7s 

The vertical stratification function V,(Z, ?) is 
governed by 

av a2v 
c=-5 
a; (3Z2 ’ 

0 d 3 < 3,, (4.5) 

subject to the boundary conditions 

av, 
dZ= -Bi2V, at Z= I, (4.6) 

- = Bi, I’, at Z = 0, 
iiZ for 5 = O(1). 
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and 

v,=l, O_=Z<l at ?=O. (4.8) 

For small t the solution is given by the composite 
function 

V,(Z,i) = - 1 +erf zIT -texp[Bi,Z+Bi:i] 
! 1 2,/t, 

+exp[Bi,(l -Z)+Sii?J 

(4.9) 

It remains now to consider the solution for the 
pouring sequence defined by (2.21)-(2.23) with the 
initial condition: 

V(Z, r) = V,(Z, ?,) at r = 0, 0 < z f I. 
(4.10) 

Lndle trmperaturr distrihtrtion during pnwirlg 

0 < t d 1 with prior fherd st~ut~cat~~~?. 

To make (2.21)-(2.23) and (4.10) amenable to 
numerical study introduce the new variable 

1; = Z!( 1 - 712. (4.11) 

The governing equations become 

o<J’:< 1, O</r<l, (4.12) 

subject to the boundary conditions: 

?I’ 
-_= 
(?.I 

-Biz(l-r)2V at y=l, (4.13) 

r’ I/ 
~ = Bi,(l -r)2V at y = 0, 
t’ y 

(4.14) 

and 

V = li,(y, ;,) at T = 0, 0 -< y < 1. (4.15) 

Using the Crank- Nicolson method, see Smith 143, 
it was a straightforward matter to program these 
equations. For the jth to (jt- 1)th time step, (1 -7) 
was replaced by (I -Tj+l,z), and apart from this the 
implicit procedure followed that in [4]. In a typical 
calculation a time step of Ar = 0.001 and spatial step 
Ay = 0.01 was employed. 

Note that the thermal distribution (4.9) prior to 
pouring can also be found using the Crank-Nicolson 
method. This study was completed so as to achieve a 
single computer programme for the waiting and 
pouring sequences. In doing so it was necessary (see 
(4.9)) to use boundary layer type variables of the 

form i = Z/2$:. The spatial step in [ was then 
chosen so as to provide the thermal distribution at 
z = 0 for nodal points y = O(O.01) 1.00, and so 
avoided the use of interpolation procedures. 

Numerical solutions have been obtained for the 
dimensionless emptying times E = 0.001, 0.002 and 

0.004. The effect of ladle surface heat transfer was 
simulated by values Bi, = 0.5, 1. 3 and 5 first with an 
insulating slag surface Bi, = 0 and then allowing for 
slag surface heat transfer on taking values 

Bi2 = Bir/20. Standing periods ?,/E = O(0.25) 1.00 
were also investigated so as to simulate thermal 
stratification prior to the pouring sequence. The 
results of these numerical studies are considered in 
the next section. 

5. DISCUSSION OF RESC’LTS AND COMPARISON 
OF THEORETICAL PRED5CTlO~S WITH PLANT 

O~ER~ATIO~S 

It is the purpose of this section to discuss the 
results of the different methods used to solve this 
mathematical model for heat transfer and to assess 

the relevance of these results to plant observations. 
For the pouring of molten steel, the nozzle pouring 

temperature r, is greater than TF, the fusion 
temperature. In practice the fusion temperature of 
molten steel lies in the range 1470 to 1530°C. 
Furthermore there are variations in the observed 
initial temperature T, (although here an approxi- 
mate value of 1600°C is employed). Plant data 
indicates that the dimensionless fusion temperature 
0, usually lies in the range 0.942 GO,, < 0.957. 
Clearly. in the interpretation of the theoretical 
results, the dimensionless nozzle streaming tempera- 
ture (‘TV- r,)/(T, - T,) must be greater than this 

value. 

(A) The case of the in.sukzting slag swf~ce with 770 

initid therrnd stratification Bi2 = 0 and 7, = 0 
In Fig. 2 the variation in temperature of the 

molten steel on the vertical axis is displayed for 
various values of the dimensionless time 7. These 

r- ----------7 

0.96 

I 

09&L 02 1 1 04 1 1 06 1 1 0.8 1 1 I 
y=z/ (1-r)’ 

Fro. 2. Dimensionless temperature distribution for various 
times (Bi, = 5, Bi, = 0, G = 0.002). 
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0.96- 

095 I I I I ( 1 I 1 
00 02 0.4 06 06 

T 

FIG. 3. Dimensionless nozzle streaming temperature 
against time for various E (Bi, = 5, Bi, = 0). 

0 min 
:“. Standing time, ts y 

45 

; p 0.96 - pI, _____e?!E___ - 
I t- I----- &= 0.942 ----___ 

0.94 

4 

t 

t 

0.92’ 

c 

T 

FIG. 4. Dimensionless nozzle streaming temperature 
against time for various standing times (Bi, = 2, 

Bi, = 0, E = 0.001). 

profiles are valid for the bulk of the steel except in 

the transient thermal boundary layer region attached 
to the cylindrical surface. Appreciable changes in 
temperature, below the initial temperature, only 
occur for z > 0.85. 

Figure 3 shows the effect on the nozzle streaming 
temperature of decreasing E, which is equivalent to 
increasing the nozzle size. (This is for the case 
Bi, = 5.) A decrease in E implies a faster emptying 
rate, and hence as shown, a slowing down of the 
cooling induced by convective heat transfer. It 
should be noted that the numerical and analytical 
solutions are in excellent agreement up to 

-- 096 .9,.0.957 
c’+ 

_---------- 

III 5-t 

8,=0.942 
----------- 

094 _I 
- Theoretical c”rw 

o Experiment I 
x Experiment 2 

FIG. 5. Theoretical and experimental values of dimension- 
less nozzle streaming temperature against time (Bi, = 2, 

Bi, = 0, E = 0.001 standing time equals 30min). 

T = I -O(C’:~), as expected, and consequently only 
the results for the numerical solutions are displayed. 

(B) The case @an insulating slag su@ce with initial 

thermal stratijicution, Bi, = 2, B& = 0, z, # 0 
For Bi, = 2 and E = 0.001, nozzle streaming 

temperatures are displayed in Fig. 4 for initial 
thermal stratification periods t, = 10, 30 and 45 min. 
The important feature here is that in each case the 
thermal stratification region at the base is drained off 
by the time T = 0.1. For T > 0.1 the nozzle tempera- 
ture in each case will be the same and thus 
independent of the standing period. Of course, this 
assumes that the steel is not left standing for so long 
that actual solidification commences prior to pour- 
ing. Using (4.9) it is easy to show that this means 

(5.1) 

For the typical ladle considered this corresponds to 
t, = 29min. However, the thermal capacity of the 
ladle wall, and the associated transient behaviour, 
which have not been included in this preliminary 
model, would affect this conclusion. 

(C) Comparison 01’ theoretical predictions with plant 
observations 

Figure 5 shows the non-dimensional nozzle tem- 
perature variation observed throughout a typical 
pouring sequence. Such temperature observations 
are very difficult to make during the first few minutes 
of pouring. In fact sometimes the steel does indeed 
solidify in the nozzle itself. This indicates that the 
temperature may in fact be lower than the observed 
value. In view of the difficulty of making obser- 
vations, and the variations between the two casts 
illustrated, the agreement with the theoretical model 
is satisfactory. 
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6. CONCLUSIONS ~c~now~e~g~enrs-one of us (P.E.) is indebted to the 

An inviscid flow model for heat transfer in the Science Research Council for a mamtenance grant. We are 

pouring sequence of a ladle of molten steel has been 
indebted to Mr. V. J. Small (British Steel Corporation 
(Scunthorpe)) for his continued interest in this problem. 

employed to obtain the nozzle streaming tempera- 
ture for a typical ladle. The main limitations of the 
model are firstly, that the idealization of the wall 1. 
thermal boundary condition neglects the thermal 
capacity of the wall and the associated transient 
behaviour; secondly, that near the end of the 2. 
pouring sequence the inviscid flow assumption is 
invalid. 
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ETUDE THEORIQUE DU TRANSFERT THERMIQUE DANS UNE LINGOTIERE D’ACIER 
LIQUIDE PENDANT LA COULEE 

R&sum&On propose un mod&e thiorique pour I’ecoulement et le transfert de chaleur d’un acier liquide 
&rant la co&e &me lingotidre. On obtient des solutions analytique et numerique. Dans les limites du 

modele, un accord satisfaisant est constate avec les observations. 

THEORETISCHE UNTERSUCHUNG DES W~RME~BERGANGS IN EINER GUSSPFANNE 
MIT GESCHMOLZENEM STAHL WAHREND DES GIESSENS 

Zusammenfassung-Fiir die Strdmung und den Warmeiibergang einer Stahlschmelze in der GuBpfanne 
wahrend des GieBens wird ein theoretisches Model1 vorgeschlagen. Analytische und numerische 
Losungen wurden gewonnen. Innerhalb der Grenzen des Modells ist die Ubereinstimmung mit 

Betriebserfahrungen befriedigend. 

TEOPETHYECKOE ACCJIEAOBAHHE TEIIJIOIIEPEHOCA B KOBBIE 
C PACH~AB~EHHO~ CTAJIblO I’IPM: PA3JIkiBKE 

A~IOTSUES - IIpemoxma ~eope~meman MoBem Te’feHHlt H ~nnone~H~ ~cnna~eHx0~ CTMW 
B YOBiue npw pa3kiBIce. noJIyYem aH~HTHqe~KHe H mcJieHHIJe pemeanr. B npenenax OrpaHHueHHti 
MOAeAH &?ZiyJlbT2lTbl $NWitiTOB yAOBJieTBOpHTeJIbH0 COWWyloTC!J C ANiHbIMH HatiJllOAeHHii, nOny- 

qembmH B npo~brurnentrbtx ycnosnex. 


